
steady; the casing wall of the malfunctioning fuel assembly is only partially in the molten 
state here, and the casing wall of the neighboring fuel assembly remains undamaged. Calcula- 
tion for the case of runoff of molten wall material from the contact zone shows that the in- 
ternal wall melts somewhat more rapidly: in 4.6 sec from the moment of contact. However, 
in both cases, if normal heat extraction from the casing wall of the neighboring fuel assem- 
bly is maintained, this wall remains undamaged. 

NOTATION 

x, coordinate; t, time; T, temperature; ~, thermal conductivity; c, specific heat of unit 
volume; a, thermal diffusivity; Rm, latent heat of fusion; Tm, melting point; 6, thickness 
of casing wall; XI, coordinate of the molten-layer boundary; y, coordinate of the phase boun- 
dary; qsl, heat flux to the internal (left-hand) boundary; qs2, heat flux from the external 
(right-hand) boundary; e2, heat-transfer coefficient from the external boundary; ts, time of 
melting of wall; qVF, heat liberation in the fuel layer; ~, time step; h, spatial step of the 
grid. Indices: s liquid phase; s, solid phase; i, number of the spatial grid point; j, 
number of the time step; Nvl, Nv2, numbers of the spatial grid points at the phase interface 
in the j-th and (j + l)-th-steps, respectively; N, number of spatial grid points; ky, number 
of iteration. 
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TWO-MODE MODEL OF FLOW IN A PLASMOTRON CHANNEL 

N. F. Aleshin and A. F. Bublievskii UDC 533.961 

The characteristics of an electric arc in a turbulent gas flow are calculated 
on the basis of the concept of laminar flow in the arc zone. 

The methods of calculating electrical arcs in a cylindrical channel which are known in 
the literature are usually based on the assumption that the flow conditions, which depend 
on the parameters of the external gas flow blown through the arc, are the same (either lami- 
nar or turbulent) over the whole channel cross section. At the same time, taking account 
of the specific properties of the electric arc allows the flow in the plasmotron channel 
to be represented in the form of central laminar flow and outer turbulent flow in many cases. 

Estimates for various gases show that, at moderate Re (up to 10s), calculated from the 
input parameters, and at sufficiently high temperatures in the central region of the flow 
(% 15,000 K or more), the mean turbulent thermal conductivity over the channel cross section 
is approximately an order of magnitude lower than the molecular thermal conductivity, while 
the corresponding viscosity values are comparable with one another. Similar results were 
obtained in [I], where it was indicated that the heat transfer in the axial of a plasmotron 
channel may be regarded as laminar. 

Note also the possibility of decrease in the temperature pulsations in a plasma arc on 
account of radiant heat transfer between turbulent eddies and rapid "deexcitation" of the 
highest-temperature formations [2]. The result is that turbulent heat transfer is negli- 
gibly small, and there is practically no pulsational component of the heat flux for opti- 
cally dense media with very intense radiation. 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian 
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. 5, pp. 830-835, No- 
vember, 1986. Original article submitted October 2, 1985. 
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Intense heat liberation and electrical or magnetic fields have an additional laminariz- 
ing influence on the flow in the arc column. The action of all these factors may lead to a 
situation with predominantly laminar flow in the central arc layer and turbulent flow out- 
side that (disregarding the laminar sublayer close to the wall) in the case of high temper- 
atures (the largest currents) and moderate Reynolds numbers. 

The validity of this model is also confirmed by data on interferometry of the flow and 
photoelectric recording of the oscillations of the integral arc radiation in a plasmotron 
channel [3]. 

The two-mode flow model here discussed was used in [4], to calculate the characteristics 
of an atmospheric-pressure plasmotron, neglecting radiation from the arc. Satisfactory 
agreement of the experimental and theoretical data was noted for helium arcs; this may indi- 
cate the correctness of the approach adopted. 

In the present work, a two-mode model is developed for the case of an arc in which the 
radiation cannot be neglected. As before, a stabilized section in which the flow parameters 
and arc characteristics do not change along the channel axis is considered. In this case, 
all the heat liberated is transmitted to the channel wall on account of heat conduction and 
radiation. The atmospheric-pressure arc plasma in the channel of relatively small diameter 
is practically transparent to the intrinsic radiation, and therefore it may be taken into 
account in the approximation of an optically thin layer. 

The flow in the channel is represented as two zones: an internal electrically conducting 
laminar zone and an external electrically nonconducting turbulent zone. Then the energy 
equation and boundary conditions for these zones are, respectively, as follows 

r dr + ~E2-  ~=0' S(O)=So, S(r~)=Sa; (1) 

I d /rA dh~ 
r dr ~ q dr ] = 0 '  h ( ra )=h  a , h (R)=hc , .  (2) 

To simplify the calculation, no account is taken here of the intermediate zone in which 
the transition from laminar to turbulent flow occurs. 

It is usual to solve Eq. (I) by !inearizing the dependences of the electrical conduction 
and radiation on the thermal function S. The values of the thermal function at the bound- 
ary of the internal and external zones must be the same here for both approximations. How- 
ever, this approach is not very accurate, since in reality the radiation becomes significant 
at markedly higher temperatures (and hence S) than the electrical conduction. In addition, 
the dependence a(S) for large S deviates strongly from a straight line, and therefore the 
linear approximation leads to great error. To eliminate these difficulties, the electri- 
cally conducting zone is divided into two layers: a central radiating layer and an annular 
layer in which there is no radiation. In each of these layers, the nonlinear dependences 
o(S) and r are replaced by linear dependences. Then the energy equation for the first 
and second layers with the corresponding approximations is written in the form 

. . . . . . .  r ~ aiE- - -8  = O, 
r dr dr ] 

S , ( ~  = S o, S , ( & )  = Se, S s ~ S , ~ S o .  ( 3 )  

Here 

a: = b~(S: - - S , )  + ~ ,  ~ = a ' (& - - S J ,  (4 )  

1 d ( r d S , ,  ~ + o ,  E = = O  ' (5 )  
,- dr t: ~ )  

where S,z (r,) = S,, S,, (r,) = S~ So~<S,, ~<S,, 

(r,[ = b~, (S,, - -  Sa). (6) 
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It is clear that Eqs. (4) and (6) are a considerably better approximation of the actual de- 
pendences o(S) and ~(S) than in the case of a single electrically conducting zone. 

Solving Eqs.(3) and (5) gives the following expression for the thermal function 

S[ = $8 - a~E~ ( ---~) .Jotmr, ,  (7 )  m2 + So-~S~ + a~E~ \ "  " " 

S ~  = S,, + (S. - -  S,,) go (x) 4 (x,,) -- go (x,,) Jo (x) ( 8 )  
Y0 (x,) J0 (x~) - -  Yo (x~) &(x,) ' 

where  m 2 = b i  E2 - a 2, x = r b i i  E, x o = r o b i i E ,  x s = r s b i I  E. 

S o l v i n g  Eq. (2 )  e n t a i l s  knowing  t h e  t u r b u l e n t  h e a t - t r a n s f e r  c o e f f i c i e n t .  The e m p i r i c a l  
f o r m u l a s  f o r  Aq i n  t h e  l i t e r a t u r e  a r e  d i f f i c u l t  t o  u s e  i n  a n a l y t i c a l  c a l c u l a t i o n s  b e c a u s e  
o f  t h e i r  c o m p l e x i t y  and u n w i e l d i n e s s .  A s i m p l i f y i n g  a p p r o a c h  t o  t h e  d e t e r m i n a t i o n  o f  Aa 
i s  c o n s i d e r e d  b e l o w .  The t u r b u l e n t  v i s c o s i t y  i s  f o u n d  f o r  f l o w  in  a c y l i n d r i c a l  c h a n n e l ;  ~ 
on the basis of expressions for the tangential turbulent stress 

du r 

Hence t a k i n g  i n t o  a c c o u n t  t h a t  ~w/P = V2, i t  f o l l o w s  t h a t  

V~ (9) 
]xt = P du 

R - -  
dr.  

As is known, a power-law (to power 1/7) velocity distribution over the cross section may be 
written for the flow in tubes at Re up to 10 5 

u _ ( 1 _  r ) ' /z  
. , .  R 

(i0) 

Since u = 0.817u m for the power i/7, it follows that 

u = 1,22G(I--~ui (11) 

Using the expression u = ~/8)u, where q = 0.3164 ~d~ (the Blasius resistance law) and 
substituting Eq. (ii) into Eq. (9), it is found that 

~ t =  0,0806 r(1 __~6/7 (12)  

A s i m i l a r  a p p r o a c h  was u s e d  in  [5]  f o r  d e t e r m i n i n g  ~ t i  t o  s i m p l i f y  t h e  a n a l y t i c a l  c a l c u l a -  
t i o n ,  t h e  e x p e r i m e n t a l  d e p e n d e n c e  o f  t h e  k i n e m a t i c  t u r b u l e n t  v i s c o s i t y  was a p p r o x i m a t e d  by 
two parabolas. In fact, this operation is equivalent to approximating the actual velocity 
profile by an analytically simple expression. 

Using the data of [6], which indicate that the turbulent Prandtl number (Pr t) in the 
region of flow with a logarithmic profile (close to the power law adopted here) does not do- 
pond on Re, Pr or the distance from the wall, and is ~0.87, the final expression obtained 
for Aq is 

4 -- 3 

A q -  ~' 0 ,0926~  R ~ r ( 1 - -  . (13)  
Pr~ 

Since the power-law velocity profile is not significantly altered by the nonisothermal char- 
acter of the flow [7], Eq. (13) may also be used for the external gas flow blown through the 
arc, referring the gas properties (in particular, B) to its mean temperature. 

The solution of Eq. (7) with Aq from Eq. (13) takes the form 

h= (h~--hw)f(~§ f(~)hw--O,O82h~ , (14)  
f (r~) - -  0,082 

where 

0,0187 
[ ~ )  --~ _ q / r - -  0,1231 ln[1 - - (1  - -  ~'/71 + 

I r) 
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Fig. i. E -I characteristics of an 
arc in a channel with an argon flow. 
Experiment: I) [14]; 2) [12]; 3) 
[13]; 4-6) theoretical data: i, 4) 
d = 15 mm, G = I.i g/sec; 2, 5) 8, i; 
3, 6) i0, 4. E, V/cm; I, A. 

+ O,11041n [ ( 1 - -  r)  2 / 7 + 1 , 8 0 2 ( 1 - r )  ~/7+ II + 0 , 1 9 4 1 a r c t g [ 1 , 2 7 9 ( 1 - - 0 1 / 7 - - 0 , 7 9 7 ] +  

+ 0,2411 arctg [1,025 (1 - -  7) ~ / 7 + 0,228] + 0,2238 arctg [2,307 (1 - -  

- -  7)1/7+ 2,0781 - -  0,2209 [(1 - -7)  1 / 7 -  0,781 ~'. 

The use of matching conditions at the boundary between the layers 

Si(r~)==SlI (rs )=S~ ' dSi I dSit ] 
.... a /  r=rs dr r=,~ 

leads to a system of two equations with three unknowns re, r~, E 

Jo (mrs) -- c~E" 
m ~- (So - -  St) + ~ E  ~ 

(15)  

(16)  

m ~ (So - -  S,) + ~ E  ~ d~ (mrs) == Yo (x~) ]~ (x,) - -  Y~ (x~) ]o (xo) 
mbi IE (S~ - -  Sa) Yo (x,) Jo (xa) - -  Yo (xa) do (xe) 

To close the system in Eqs. (16) and (17), a third equation must be added. 
heat fluxes at the boundary of the arc zone and the external turbulent flow are equated 

drdS r=r~ =: A~ drdh I 
I t '=f  C] 

This leads to the required equation 

~/,t'~G 3 h,r---hw 
- -o ,o132 R ~ Y~, If (7,,) --0,0821 

= b1iE (Se - -  Sa) Yo (%) dt (xa) - -  YI (x.) Jo (x.) 
ro (x,) 4 (xo) - -  Yo (x,,) Jo (x,) ' 

(17)  

To this end, the 

(18) 

which, together with Eqs. (16) and (17), forms a closed transcendental system, allowing the 
unknowns r o, rE, E to be determined for specified channel radius, working-gas flow rate, 
and axial value of the thermal function. 

The arc current is found using the Ohm's law in integral form 

(7) and (8) and integrating, 

(19) 

R 
I = 2~E .[. ardr. 

o 

After substituting in ~ from Eqs. (4) and (6) and S from Eqs. 
it follows that 

I ~ 2~E mE ~ 
E~ln r~ 

R 

r~ o-c~ -I . 
2m 2 J 

On the basis of the formulas obtained, the basic characteristics of an electrical arc in 
a cylindrical channel with the injection of a turbulent argon flow are calculated. The values 
of the transfer coefficients required here are taken from [8-10]. The basis for the choice 
of these data was outlined in [Ii]. 
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Some results of the calculation are shown in Fig. 1, in comparison with experimental 
data [12-14]. The experimental arc characteristics, like the calculation, apply only to the 
stabilized section. As follows from Fig. i, the agreement of the theoretical and experi- 
mental E--I characteristics is satisfactory. 

It may be concluded from the foregoing that the given two-mode model of flow in a plas- 
motron channel may be used at sufficiently large arc currents and moderate Reynolds numbers 
of the turbulent argon flow. The analytical expressions obtained may be used in calculations 
of the basic characteristics of the stabilized section of the arc in a plasmotron with cor- 
responding operating conditions. 

NOTATION 

o, electrical conductivity; e, density of the integral radiation; E, electric field 
strength; I, strength of arc current; h, enthalpy; S = J %dT, thermal function: ~, tangen- 

0 
tial stress; Aq, turbulent heat-transfer coefficient; ~, ~t, molecular and turbulent visco- 
sity; v, kinematic viscosity; 0, density; u, velocity; Um, maximum velocity; u, mean velo- 
city; V, dynamic velocity; G, mass flow rate; r = r/R, reduced radius; R, channel radius; 
J0, Y0, zero-order Bessel functions of the first and second kind; J~, Yl, first-order Bessel 
functions of the first and second kind. Indices: 0, value at the axis; w, channel wall; o, 
boundary of the conducting zone; e, boundary of the radiating zone. 
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